Immobilization of Genetically-Modified D-Amino Acid Oxidase and Catalase on Carbon Nanotubes to Improve the Catalytic Efficiency
نویسندگان
چکیده
D-amino acid oxidase (DAAO) and catalase (CAT) have been genetically modified by fusing them to an elastin-like polypeptide (ELP). ELP-DAAO and ELP-CAT have been separately immobilized on multi-walled carbon nanotubes (MWNTs). It has been found that the secondary structures of the enzymes have been preserved. ELP-DAAO catalyzed the oxidative deamination of D-alanine, and H2O2 was evolved continuously. When the MWNT-supported enzymes were used together, the generated hydrogen peroxide of ELP-DAAO could be decomposed in situ. The catalytic efficiency of the two immobilized enzymes was more than five times greater than that of free ELP-DAAO when the ratio of immobilized ELP-CAT to immobilized ELP-DAAO was larger than 1:1.
منابع مشابه
Direct DNA Immobilization onto a Carbon Nanotube Modified Electrode: Study on the Influence of pH and Ionic Strength
Over the past years, DNA biosensors have been developed to analyze DNA interaction and damage that have important applications in biotechnological researches. The immobilization of DNA onto a substrate is one key step for construction of DNA electrochemical biosensors. In this report, a direct approach has been described for immobilization of single strand DNA onto carboxylic acid-functionalize...
متن کاملCatalytic Effects of Carbon Nanotubes on Complexation of Some Amino Acids via Cobalt Cation Catalyst
In this research, investigation of the adsorption isotherms and the effect of solution conditions such as pH and concentration of complexation of some amino acids with cobalt(II) nitrate six-hydrate upon multi-wall type carbon nanotube (CNT) were done. The adsorption capacity of complexation of amino acids onto the surface of carbon nanotube increased with the pH from acidic to alkaline. At pH ...
متن کاملDirect Electrochemistry of Polyphenol Oxidase
The electrochemistry of banana tissues on a carbon paste electrode modified with multi-walled carbon nanotubes (MWCNTs) is presented. Cyclic voltammetry is applied to investigate the direct electrochemistry of banana tissues i.e. a source of polyphenol oxidase (PPO). A redox couple with an anodic and counterpart cathodic peak is obtained. The influence of various parameters such as pH,...
متن کاملCarbon nanotubes prolong the regulatory action of nerve growth factor on the endocannabinoid signaling
Introduction: Carbon nanotubes (CNTs) have shown enormous potential in neuroscience. Nerve growth factor (NGF)-CNTs complex promotes the neuronal growth, however, the underlying mechanism(s) have remained elusive. Based on the interplay between NGF and the endocannabinoid system, involvement of the neuroprotective endocannabinoid, 2-arachidonoyl glycerol (2-AG), was investigated in the mechanis...
متن کاملNew hybrid nanomaterial derived from immobilization of a molybdenum complex on the surface of multi-walled carbon nanotubes
In this work, we report a new well dispersed molybdenum complex attached through the mediation of aminopropylsilyl groups on the surface of multi-walled carbon nanotubes (MWCNTs). The prepared hybrid nanomaterial was characterized with different physicochemical methods such as Fourier transform infrared and atomic absorption spectroscopies, transmission electron microscopy, energy-dispersive X-...
متن کامل